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Abstract
Phonon dispersion relations and infrared and Raman spectra of crystalline Sb2Te3 were
computed within density functional perturbation theory. Overall good agreement with
experiments is obtained, which allows us to assign the Raman and IR peaks to specific phonons.

(Some figures in this article are in colour only in the electronic version)

S Supplementary data are available from stacks.iop.org/JPhysCM/21/095410

1. Introduction

Sb2Te3 is a material of interest for applications in thermo-
electric devices [1]. It is also a component of chalcogenide
alloys exploited as phase change materials in information
storage devices [2]. In this work, we investigate the vibrational
properties of crystalline Sb2Te3 from first principles aimed
at assigning the peaks of the experimental Raman and IR
spectra and at reproducing experimental phonon dispersion
relations. The calculations assess the reliability of a framework
based on density functional theory (DFT) in reproducing the
vibrational spectrum of Sb2Te3 of relevance for future ab initio
investigation of its thermoelectric properties. The results also
aid future analysis of the vibrational spectra of the ternary
GeSbTe alloys of great technological relevance for information
storage, such as (GeTe)2(Sb2Te3) [2, 3] which crystallizes in a
hexagonal phase similar in structure to Sb2Te3.

2. Computational details

Calculations were performed within the framework of DFT
with exchange and correlation energy functional in the
generalized gradient approximation (GGA) of Perdew–Burke–
Ernzerhof (PBE [4]) and norm-conserving pseudopotentials as
implemented in the codes PWSCF and PHONONS [5]. Only
outermost s and p electrons were considered in the valence.
For Te we also considered including semicore d states in the
valence as discussed in section 3. Kohn–Sham (KS) orbitals
were expanded in a plane wave basis up to a kinetic cutoff of
20 Ryd. Brillouin zone (BZ) integration was performed over

a 6 × 6 × 6 Monkhorst–Pack (MP) mesh [6]. Equilibrium
geometries have been obtained by optimizing internal structure
and lattice parameters. Residual anisotropy in the stress tensor
at the optimized lattice parameter at each volume is below
0.3 kbar. The energy versus volume data were fitted to a
Murnaghan function [7]. Infrared and Raman spectra were
obtained from effective charges, dielectric susceptibilities and
phonons at the � point within density functional perturbation
theory [8]. Relevant formulae for the calculation of the IR
and Raman spectra are given in section 3. Phonon dispersion
relations were computed along the symmetry direction for
which inelastic neutron scattering data are available [9].

3. Results

3.1. Structural and electronic properties

Crystalline Sb2Te3 has a rhombohedral geometry (R3̄m space
group (D5

3d)) with five atoms per unit cell [10]. The crystal
structure can be better visualized in the conventional hexagonal
supercell with three formula units (figure 1). In the hexagonal
cell we recognize three slabs, each formed by five hexagonal
layers stacked along c in the sequence Te–Sb–Te–Sb–Te, each
layer containing a single atom in the unit cell. The weak Te–
Te bonds, 3.736 Å long [10], connecting adjacent slabs are
not shown in figure 1 to emphasize the presence of Sb2Te3

structural units. The three atoms independent by symmetry are
at crystallographic positions Te1 = (0, 0, 0), Te2 = (0, 0, x)

and Sb = (0, 0, y) (figure 1).
The calculated parameters x and y, bond lengths and

lattice parameters at equilibrium are compared in table 1 with
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Te1
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Figure 1. Structure of Sb2Te3 in the conventional hexagonal
supercell (three formula units). (a) Side view. (b) Top view along the
hexagonal c axis. The three atoms independent by symmetry are
labeled.

Table 1. Theoretical and experimental lattice parameters, a and c
(Å), of the conventional hexagonal cell, parameters x and y which
assign the position of atoms independent by symmetry,
Te2 = (0, 0, x) and Sb = (0, 0, y), in crystallographic units and
bond lengths (Å). Experimental data are from [10]. Previous
theoretical PBE results from [11] and [12].

This work
This work
(exp. cell)

Theorya

[11]
Theoryb

[12] Exp. [10]

a 4.316 4.35 4.44 4.264
c 31.037 30.844 30.29 30.458
x 0.785 0.788 0.7864 0.791 0.7872
y 0.397 0.398 0.3977 0.400 0.3988
Te1–Sb 3.178 3.156 3.201 3.263 3.168
Sb–Te2 3.020 3.005 3.037 3.102 2.979
Te2–Te2′ 3.891 3.695 3.833 3.626 3.736

a Pseudopotential, plane wave calculation [11].
b All-electron, full potential, linearized augmented plane wave
calculation [12].

experimental data [10] and previous theoretical works [11, 12].
Theoretical bond lengths are reported both at the theoretical
and at the experimental equilibrium lattice parameters. The
calculated bulk modulus is 22 GPa.

The agreement with experimental data is overall
acceptable, but for a misfit in the Te–Te bond length which is
much larger than the usual errors within DFT-GGA. The bond

(a)

(b)

Figure 2. Electronic density of states (DOS) of Sb2Te3 calculated on
a 20 × 20 × 20 mesh in the irreducible Brillouin zone. Each
electronic level is broadening with a Gaussian function 0.09 eV wide.
(a) Total DOS. (b) DOS projected on s and p orbitals of Te and Sb
atoms. The zero of energy is the top of the valence band.

lengths are brought to a better agreement with experiments
by fixing the lattice parameters to the experimental values.
The inclusion of semicore d states of Te does not lead to
improvements in the theoretical equilibrium geometry, the
structural parameters of table 1 turning out to be a = 4.338 Å,
c = 31.338 Å, x = 0.785, y = 0.397, d(Te1–Sb) = 3.196 Å,
d(Sb–Te2) = 3.033 Å and d(Te2–Te2′) = 3.949 Å. This
misfit can be ascribed to deficiencies of most common DFT-
GGA functionals in describing weak bonds such as the Te–Te
bond in this system.

The calculated electronic density of states of Sb2Te3 at
the theoretical equilibrium volume is reported in figure 2.
The system is insulating, with a small direct bandgap at the
� point of 0.15 eV. Inclusion of the spin–orbit interaction,
here neglected, changes several details of the band structure,
causing the bandgap to become indirect and to widen to
0.278 eV [11] (experimental value 0.28 [13]).

3.2. Vibrational properties

Phonons at the � point are classified according to the
irreducible representations of the point group D3d as

� = 2(A1g + Eg) + 3(Eu + A2u). (1)

One Eu and one A2u are acoustic modes. The modes
which display a dipole moment (u-modes) couple to the inner
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Table 2. Frequency (cm−1) and character of �-point phonons of the
optimized geometry at the theoretical and experimental (exp. cell)
equilibrium lattice parameters. The g-modes (Raman active) and
u-modes (IR-active) are reported separately. Acoustic modes (at zero
frequency) are omitted. For g-modes the coefficients of the Raman
tensor (equation (8) and matrices (9)) are reported in units of
10−4 Å

3
. For u-modes, two sets of frequencies are reported.

Frequencies in parentheses are obtained by including the
contributions of the non-analytical part of the dynamical matrix with
�q parallel to the hexagonal axes c or a (equation (2)) for A2u or Eu

modes, respectively. The dipole moment p (equation (5), in atomic
units) of u-modes is also given.

Mode This work
This work
(exp. cell) Exp.a a2 or c2 b2 or d2

Eg (1) 46 49 0.00 0.18
A1g (1) 62 67 69 2.97 4.35
Eg (2) 113 117 112 12.85 10.12
A1g (2) 166 169 165 3.28 0.46

Mode This work
This work
(exp. cell) Exp.a px py pz

Eu (2) 72 77 (128) 67 0.0214 0.0152 0.0000
Eu (3) 99 100 (100) 0.0005 0.0009 0.0000
A2u (2) 108 109 (114) 0.0000 0.0000 0.0053
A2u (3) 145 146 (154) 0.0000 0.0000 0.0046

a Experimental data are from Raman and IR spectra of [14].
A2u (1) and Eu (1) are acoustic modes.

macroscopic longitudinal electric field which shifts the LO
phonon frequencies via the non-analytical contribution to the
dynamical matrix

DNA
αβ (κ, κ ′) = 4π

Vo

∑
α′β ′ Zαα′(κ)qα′ Zββ ′(κ ′)qβ ′

q · ε∞ · q
, (2)

where Z and ε∞ are the effective charges and electronic
dielectric tensors, Vo is the unit cell volume and q is the
phonon wavevector. The macroscopic field contribution to
the dynamical matrix introduces an angular dispersion of the
phonons at the � point, i.e. the limit of the phonon bands
ω(q) for q → 0 depends on the angle formed by q with
the optical axis. The calculated dielectric tensor ε∞ and
the effective charges Z for the optimized geometry at the
experimental lattice parameters are given below in Cartesian
coordinates:

ε∞ =
[ 64.4 · ·

· 64.4 ·
· · 47.8

]

Z(Te1) =
[ −6.7 · ·

· −6.7 ·
· · −5.4

]

Z(Te2) =
[ −5.5 · ·

· −5.5 ·
· · −1.2

]

Z(Sb) =
[ 9.1 · ·

· 9.1 ·
· · 4.0

]

.

(3)

The available experimental dielectric constant is ε∞
xx =

51 [14]. The calculated phonon frequencies at the � point

Figure 3. Sketch of the displacement patterns of phonons at the �
point. E and A modes involve displacements in the a–b plane and
along the c axis.

are reported in table 2 for the optimized geometry both at the
theoretical and equilibrium lattice parameters. Two sets of
frequencies are reported, namely those obtained by neglecting
the macroscopic field and those obtained by including the
contribution of the non-analytical part of the dynamical
matrix with q parallel to the c or a axes (equation (2)) for
modes A2u or Eu, respectively. The displacement patterns
of all the modes are sketched in figure 3 and are available
in a MOLDEN file as additional material (available from
stacks.iop.org/JPhysCM/21/095410).

The dielectric function, which controls the IR absorption,
is given in terms of phonons and effective charges by

ε(ω) = ε∞ + 4π

Vo

3N∑

j=1

pα( j)pβ( j)
2ω j

ω2
j − ω2

(4)

3
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Figure 4. IR spectra α(ω)n(ω) (see text) for light polarized along
the principal axes a and c of the hexagonal crystal.

where p( j) is defined by

p( j) =
N∑

κ=1

Z(κ)
e( j, κ)

√
2Mκω j

(5)

and is reported for all u-modes in table 2. The sum over κ

runs over the N atoms in the unit cell with masses Mκ , and
e( j, κ) and ω j are the eigenstates and the eigenvalues of the
dynamical matrix at the � point, without the contribution of
the macroscopic field. The dielectric function in equation (4)
allows computing the IR absorption for a generic polarization
of the transmitted light by solving the Fresnel equation [15].
For the particular case of light linearly polarized with an
electric field along the principal axis, the absorption coefficient
has the simple form

αi (ω) = ω

ni (ω)c
Im εii (ω + iη, η → 0)

= 4π2

Voni (ω)c

∑

j

ω j |pi( j)|2 δ(ω − ω j ) (6)

where i is the crystallographic direction of the hexagonal cell
(a or c), c is the velocity of light in vacuum and ni(ω) is
the (frequency-dependent) real part of the refractive index.
The calculated IR absorption spectra αi (ω)ni(ω) are shown in
figure 4. The δ functions in equation (6) are approximated by
Lorentzian functions with a constant width of 4 cm−1. The
experimental IR spectrum [14] for a single crystal revealed
only an Eu mode at 67 cm−1, in good agreement with the
position of the main Eu mode and the weakness of the other
structures in the theoretical IR spectra in figure 4.

The differential cross section for Raman scattering
(Stokes) in non-resonant conditions is given by the following
expression (for a unit volume of scattering sample):

d2σ

d� dω
=

∑

j

ω4
S

c4
|eS · R j · eL|2(nB(ω) + 1)δ(ω − ω j ), (7)

where nB(ω) is the Bose factor, ωS is the frequency of the
scattered light, and eS and eL are the polarization vectors of the
scattered and incident light, respectively. The Raman tensor
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Figure 5. Experimental (dashed line, adapted from [14]) and
theoretical (continuous lines) Raman spectra for crystalline Sb2Te3 in
backscattering geometry for non-polarized light impinging on a
single crystal along the c axis of the hexagonal cell. The labeling of
the modes is the same as in table 2, while the corresponding
displacement patterns are sketched in figure 3. The δ functions in
equation (7) are approximated by Lorentzian functions with a
constant width of 4 cm−1.

R j associated with the j th phonon is given by

R j
αβ =

√
Voh̄

2ω j

N∑

κ=1

∂χ∞
αβ

∂r(κ)
· e( j, κ)√

Mκ

, (8)

where Vo is the unit cell volume, r(κ) is the position of the κ th
atom and χ∞ = (ε∞ − 1)/4π is the electronic susceptibility.

The tensors R j were computed from χ∞ by finite differences,

moving the atoms independent by symmetry with a maximum
displacement of 0.01 Å. The Raman tensor (equation (8)) for
the Raman-active irreducible representations (all the g-modes)
has the following form [16]:

A1g ⇒
[ a · ·

· a ·
· · b

]

Eg(x) ⇒
[ c · ·

· −c d
· d ·

]

Eg(y) ⇒
[ · −c −d

−c · ·
−d · ·

]

.

(9)
The coefficients of the Raman tensor (in equation (9)),

calculated from first principles as outlined above, are reported
in table 2 for the optimized geometry at the experimental
lattice parameters. The experimental Raman spectrum [14]
is available in backscattering geometry for non-polarized light
impinging on a single crystal along the c axis of the hexagonal
cell. In this geometry one selects the coefficients a and
c of the Raman tensor of modes A1g and Eg, respectively.
Theoretical (for the optimized geometry at the experimental
lattice parameters) and experimental Raman spectra at the
experimental set-up geometry are compared in figure 5. They
are in good agreement for the peak positions, but one observes
large discrepancies in the relative peak intensities.

However, one must note that the experimental spectrum
is recorded with a laser wavelength of 1.9 eV, well above the

4



J. Phys.: Condens. Matter 21 (2009) 095410 G C Sosso et al

Figure 6. Phonon dispersion relations along the �–Z direction
(along the c axis). Dots correspond to experimental inelastic neutron
scattering data of [9]. Branches corresponding to A and E
zone-center phonons are reported in separate panels. The upper and
lower panels correspond to the optimized geometry at the theoretical
and experimental equilibrium lattice parameters, respectively.

electronic bandgap of Sb2Te3. Effects of electronic resonances,
not included in the off-resonance formula of equation (7),
might strongly affect the Raman intensities of different peaks
and account for the misfit between theory and experiments.

Phonon dispersion relations were computed only along
the �–Z direction for which inelastic neutron scattering data
are available [9]. The dynamical matrices were computed
within density functional perturbation theory [8] for 20 q-
points along the �–Z path for the optimized geometries
at both the theoretical and experimental equilibrium lattice
parameters. The resulting phonon curves are compared with
inelastic neutron scattering data in figure 6. Phonons at the �

and Z points were also computed with semicore d states of Te
in the valence for the optimized geometry at the experimental
lattice parameters. The resulting frequencies differ by less than

2 cm−1 from the corresponding theoretical data in figure 2 for
which the d states of Te are frozen in the core.

The agreement with experimental data on the phonon
dispersion relations is overall good considering the misfit in
the Te–Te bond lengths at the theoretical equilibrium geometry
mentioned above. The comparison between the experimental
data and the calculated phonon frequencies at the theoretical
and experimental equilibrium lattice parameters shows that the
length of the weak Te–Te bond affects only slightly the optical
branches while it is crucial to reproduce the longitudinal
acoustic branch along the �–Z direction.

4. Conclusions

Based on density functional perturbation theory we calculated
Raman and IR spectra and phonon dispersion relations of
crystalline Sb2Te3. The overall agreement with experimental
data is fair but there is room for improvement. Overestimation
of the Te–Te interplanar bond length results in a sizable
underestimation of the frequencies of zone boundary acoustic
longitudinal phonons which are precisely modulated by the
interlayer distance. Thus, it is worth pursuing further work
by exploring, for instance, recently developed exchange and
correlation functionals (e.g. the approximation of Tao et al
[17]) which might perform better than the most commonly
used PBE functional in the presence of relatively weak bonds
such as the Te–Te interplanar bond in Sb2Te3.
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